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Abstract- Convolution Code based Fast Correlation Attacks 
(FCA) are a powerful class of attacks on stream ciphers. Thus 
stream ciphers are designed so that combiner function is 
correlation immune. In this paper we propose a method to 
apply Convolution Code based FCA when the combiner 
function is first order correlation immune (1-CI) but not 2-CI. 
We apply the attack on a pair of LFSRs whose sum sequence 
is correlated to key-stream. Instead of directly computing 
parity checks of equivalent LFSR for the sum sequence, we 
collect the parity checks of the individual LFSRs into two sets 
and from the cross product of the set of parity checks, select 
those pairs in which the two highest degree terms in both the 
parity checks are identical. These pairs of parity checks are 
used for setting up the Viterbi decoding phase of the FCA. 

       The proposed method is more efficient than the direct 
FCA using the product of feedback polynomials of LFSRs. 

Keywords- LFSR, Viterbi decoding, Convolutional code, 
Correlation attack, Correlation immune, Combiner function. 

I. INTRODUCTION

A popular key-stream generator used in stream ciphers 
consists of several LFSRs combined through a non-linear 
Boolean function. However, for certain generators of this 
type, statistical dependencies or correlations exist between 
the cipher text and the key-stream sequence produced by an 
individual LFSR within the key generators. The correlation 
between two binary segments is a measure of the extent to 
which they approximate each order. Depending on the order 
of resiliency of the function, there is still some correlation 
between the cipher text and the LFSR outputs. Attacks that 
exploit the similarity between the cipher text and the LFSR 
outs are termed correlation attacks. The correlation between 
cipher text and the output of an individual LFSR can be 
exploited in a divide and conquer attack. Divide and 
conquer attacks on key stream generators work on each 
component of the key stream generators separately and 
sequentially solve for individual initial contents (and 
possibly, the feedback polynomials as well) of a subset of 
the input LFSRs from a known segment of the key-stream 
sequence. These attacks are based on a model where the 
key-stream is viewed as a noisy version of an underlying 
LFSR sequence and it is assumed the noise is additive and 
independent of the underlying LFSR sequence. The attack, 
if successful, recovers the phase of the LFSR sequence 
which has the highest correlation with the key-stream 
sequence. Such attack was first proposed by Siegenthaler 
[9, 10]. [9] showed that several combining functions 

previously proposed in the literature can be broken by a 
cipher text only correlation attack. 

      For combination generators, the original correlation 
attack presented by Siegenthaler can be prevented by using 
a correlation immune combining function [10]. Siegenthaler 
introduced the concept of ݉௧௛-order correlation immunity 
[10] for combining functions as a measure of their
resistance against such correlation attacks. He also showed
how, by iteration, to construct a limited family of ݉௧௛-order
correlation immune combining functions for every
݉,			1 ൑ ݉ ൑ ݊. [15] characterizes all ݉௧௛-order
correlation immune combining functions for every
݉,			1 ൑ ݉ ൑ ݊, in terms of their Walsh transforms and
extended slightly Siegenthaler’s characterization of the
algebraic normal form of correlation immune combining
functions.

 In case the running-key is statistically independent of 
the output of each constituent LFSR, any correlation attack 
should then consider several LFSRs together. More 
generally, a correlation attack on a set of ݇ LFSRs namely 
LFSR	݅ଵ	…………LFSR	݅௞	exploits the existence of a 
correlation between the running-key ݏ and the output ܽ of a 
smaller combination generator, which consists of the ݇ 
involved LFSRs combined by a Boolean function ݃ with ݇ 
variables. Since 
 Pr	ሾݏ௡ ് ܽ௡ሿ ൌ Pr	ൣ ݂ሺ ଵܺ, …… , ܺ௡ሻ ് ݃൫ ௜ܺభ, …… , ௜ܺೖ൯൧ ്
௚݌		௚, this attack only succeeds when݌ ൏ 0.5. The number 
݇ of involved LFSRs should then be strictly greater than the 
correlation immunity order ݉ of the combining function		݂. 

This cryptanalysis therefore requires that all 2
∑ ௟೔ೕ
೟శభ
ೕసభ   initial

states be examined, where ݈௜ೕ is the length of LFSR ௝݅,  it 

becomes infeasible when the correlation immunity order ݉ 
of the combining is high. It can be significantly reduced by 
using some improved algorithms, called fast correlation 
attacks (FCA). 

 In this paper we are applying the convolutional code 
based FCA on first order correlation immune combiner 
function and giving a new approach for selecting parity 
check equations and decoding so as to recover initial state 
of the LFSR.  

 The paper is organized as follows. In Section II we 
give overview of Fast Correlation Attack. In Section III we 
give Convolutional Codes based FCA. In Section IV FCA 
when combiner function is 1-CI. In Section V we conclude 
with some possible extensions. 
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II. FAST CORRELATION ATTACKS- AN OVERVIEW 
Fast correlation attacks, as pioneered by Meier and 
Staffelbach [13, 14], improve on Siegenthaler’s correlation 
attacks by attempting to deduce the initial state without 
exhaustively trying all possible initial states and 
considerably reduce the running-time but require a longer 
segment of known key-stream. Meier and Staffelbach 
presented two different algorithms ܣ and ܤ for fast 
correlation attacks, where they use the correlation between 
the key-stream and the output stream of an LFSR. The 
algorithms largely depend on the same model of the key 
generator, the same fundamental observations and the same 
statistical model. Instead of an exhaustive search over all 
possible initial states, the algorithms are based on using 
certain parity check equations created from feedback 
polynomial of the LFSR. The fast correlation attack 
algorithm operates in two phases. In the first phase the 
algorithms find a set of suitable parity check equations 
based on the underlying LFSR feedback polynomial. In the 
second phase these parity check equations are applied to the 
key-stream sequence to determine key-stream bits which, 
with high probability, are the same as the corresponding 
bits of the underlying LFSR sequence. A threshold decision 
process along with an information set decoding technique 
or an iterative error-correction algorithm is then applied. 
The algorithm is most efficient when the feedback 
connection polynomial has only few taps   ሺݐ ൑ 10ሻ. 
          The performance of the algorithms ܣ  and ܤ are 
described in [13, 14]. The algorithms work well when the 
LFSR contains few taps, but for LFSRs with many taps the 
algorithms fail. The reason for this failure is that for LFSRs 
with many taps each parity check equations gives a very 
small average correlation and hence many equations are 
needed in order to succeed. In other words, correlation 
probability ݌  that the algorithms can handle is much lower 

if the LFSR has many taps		ቀൎ ݈
2ൗ ቁ.  A new method for 

finding parity check equations was suggested in [6, 12]. Let 
ܽ଴  be the initial state of the LFSR. The state after ݐ  shifts 
can be written as  ܽ௧ ൌ ܺ௧ܽ଴ ,   where ܺ  is an  ݈ ൈ ݈  matrix 
that depends of the feedback polynomial. Using powers of 
the matrix ܺ  a set of parity check equations can be found. 
             More methods for finding parity check equations 
are suggested in [1, 3, 4, 5, 12]. The underlying idea is to 
find code words of low weight in a general linear code. 

III. CONVOLUTIONAL CODES BASED FCA 
Johansson and Jonsson in 1999 introduced the concept of 
correlation attack using convolutional coding [8, 11]. The 
parity check equations as described in Fast Correlation 
Attack designed for a second phase consists of a very 
simple memory less decoding algorithm. In this approach 
decoding algorithms are considered to include memory, but 
still have a low decoding complexity. This work uses the 
Viterbi algorithm as its decoding algorithm. This algorithm 
also takes place in two phases. The first phase finds suitable 
parity check equations that will determine basis of encoder, 
defining the convolutional code and the second phase 
includes decoding through Viterbi algorithm. Most 
decoding algorithms which exploit the structure of the 
generator matrix use the existence of sparse parity check 

equations for the linear code   ܥ.  This technique was first 
proposed by Meier and Staffelbach in their original paper 
[13] and later improved [1, 7]. 
            Let the linear code ܥ  stemming from the LFSR 
sequences. There is a corresponding ݈ ൈ ܰ  generator 
matrix    ܩ௅ிௌோ, such that  ܽ ൌ ܽ଴ܩ௅ிௌோ , where ܽ଴ is the 
initial state of the LFSR. The generator matrix is 
furthermore written in systematic form i.e.  ܩ௅ிௌோ ൌ ሺܫ௟, ܼሻ,   
where ܫ௟  is the ݈ ൈ ݈  identity matrix. Let ܤ  be the fixed 
memory size and ܴ  denote the rate. In convolutional 
encoder with memory ܤ and rate ܴ ൌ 1 ሺ݉ ൅ 1ሻ⁄   the 
vector ݒ௡  of the code word symbols at time   ݊,  ݒ௡ ൌ
൫ݒ௡

ሺ଴ሻ, ௡ݒ
ሺଵሻ, …… , ௡ݒ

ሺ௠ሻ൯  is of the form 

௡ݒ  ൌ ܽ௡݃଴ ൅ ܽ௡ିଵ ଵ݃ ൅ ⋯…൅ ܽ௡ି஻݃஻                 (1) 

where each ݃௜, 0 ൑ ݅ ൑ is a vector of length   ሺ݉   ܤ ൅ 1ሻ,   
which is used to encode the information sequence ܽ ൌ
ܽ଴, ܽଵ, ……… , ܽே,  i.e.  ݒ ൌ  will be constructed as  ܩ  .ܩܽ
the generator matrix of a convolutional code. The parity 
check equations used in this approach generalize the 
approach of Meier and Staffelbach in the sense that they use 
the symbols ܽ௡  and (up to) ݐ others   ܽ௜

 but also any   ,ݏ′
linear combination of the ܤ symbols,  ܽ௡ି௝,					0 ൏ ݆ ൑     ,ܤ
i.e.  

ܽ௡ ൅ ∑ ௝ܿ௝ୀଵ,…,஻ ܽ௡ି௝ ൅ ∑ ܽ௡ା௜ೕ௝ୀଵ,…,௧ ൌ 0                 (2) 

where the last sum does not necessarily contain ݐ terms.  By 
defining  ܾ௡

ሺ௞ሻ, 0 ൏ ݇ ൑ ݉,  as the sum of ݐሺ௞ሻ ൑   ݐ
symbols, the complete set of parity check equations can be 
written as: 

ܽ௡ ൅ ∑ ௝ܿ
ሺଵሻ

௝ୀଵ,…,஻ ܽ௡ି௝ ൅ ܾ௡
ሺଵሻ ൌ 0, 

ܽ௡ ൅ ∑ ௝ܿ
ሺଶሻ

௝ୀଵ,…,஻ ܽ௡ି௝ ൅ ܾ௡
ሺଶሻ ൌ 0, 

…………………….. 
…………………….. 

                 ܽ௡ ൅ ∑ ௝ܿ
ሺ௠ሻ

௝ୀଵ,…,஻ ܽ௡ି௝ ൅ ܾ௡
ሺ௠ሻ ൌ 0.        (3) 

From (1) & (3), with the addition of the systematic bit   

௡ݒ
ሺ଴ሻ ൌ ܽ௡ , the vectors  ௜݃  can be identified as ݃଴ ൌ
ሺ1,1, …… ,1ሻ  and ݃௜ ൌ ൫0, ܿ௜

ሺଵሻ, ܿ௜
ሺଶሻ, …… , ܿ௜

ሺ௠ሻ൯,			݅ ൐ 0. 
The generator matrix for the convolutional code can then be 
written as 

ܩ ൌ ቆ	
݃଴		݃ଵ		݃ଶ ⋯ ݃஻
									݃଴					 ଵ݃ ݃ଶ ⋯			

⋱ ⋱ 	⋱							⋱
݃஻ቇ	 

To prepare for the decoding, one constructs the received 

vector ݎ  through ݎ௡
ሺ଴ሻ ൌ ௡ݎ ௡ andݖ

ሺ௞ሻ ൌ ∑ ௡ା௜ೕݖ
ሺ௞ሻ

௝ ,			0 ൏ ݇ ൑

݉.  The sum over ݆  includes  ݐሺ௞ሻ ൑  terms (cf. (2) and  ݐ
(3)). 
           The original Viterbi algorithm assumes that the 
convolutional encoder starts in state 0. But in this 
application we start from any possible initial state to any 
ending state for trellis corresponding to the convolutional 
code. During decoding of a convolutional code, the initial 
state is usually well defined, but in the current setting, the 
initial state is unknown. Therefore, the decoding will need 
to be performed for all 2஻  possible initial states. Let   
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ܼ஻ ൌ ሺݖଵ, ,ଶݖ …… ,  ஻ሻ, for each possible starting stateݖ
ܵ஻ ൌ ሺݏଵ, ,ଶݏ …… , ,஻ሻ.          Let   ݀ுሺܵ஻ݏ ܼ஻ሻ, the Hamming 
distance between ܵ஻ and   ܼ஻, be initial metric for the state 
when we start the Viterbi algorithm at   ݊ ൌ  Then one  .ܤ
runs the Viterbi algorithm over ݈  information symbols. At 
depth   ܤ ൅ ݈ we search for the ending state ܵ஻ା௟  with 
minimum metric. The decoder output is then the 
information sequence corresponding to the surviving path 
from one of the starting states ܵ஻  to the ending state ܵ஻ା௟  
with minimum metric. To recover the initial state of the 
LFSR, it is enough to decode ݈ consecutive information bits 
correctly. Optimal decoding (ML-decoding) of 
convolutional codes uses the Viterbi algorithm to decode as 
follows: 

1) For each state  ܵ,   let ݈݃݋ ቀܲ൫ܵ ൌ ሺݖଵ, ,ଶݖ …… ,   ஻ሻ൯ቁݖ

be the initial metric for that state when we start the 
Viterbi algorithm at   ݊ ൌ  .ܤ

2) Decode the received sequence ݎ using the Viterbi 
algorithm from ݊ ൌ ݊   until  ܤ ൌ ܤ ൅ ݈. 

Output the estimated information sequence   
൫ܽሺ஻ାଵሻෟ ,ܽሺ஻ାଶሻ,ෟ …… ,ܽሺ஻ା௟ሻෟ ൯. Finally, calculate the 
corresponding initial state of the LFSR. 
             In [8],  ݐ ൌ 2  was used. A variant of the attack 
using ݐ ൌ 4  was proposed by Molland et. al. in [2]. Using 
ݐ ൌ 4 results in many more, but weaker equations. The 
complexity of this approach is   ܱሺ݈. 2஻.݉ሻ. 

IV. FCA WHEN COMBINER FUNCTION IS 1-CI 
Assume that the combiner function is first order correlation 
immune (1-CI); More specifically the output sequence is 
not correlated to two input sequences ܾ  and ܽ  but 
correlated to   ܾ ⊕ ܽ.  Let the two sequences ܾ  and ܽ  be 
generated by LFSRs with feedback polynomials: 

݂ሺݔሻ ൌ 1 ൅ ଵ݂ݔ ൅ ଶ݂ݔଶ ൅⋯… .൅ ௟݂భݔ
௟భ and 

݃ሺݔሻ ൌ 1 ൅ ଵ݃ݔ ൅ ݃ଶݔଶ ൅ ⋯… .൅݃௟మݔ
௟మ   

of degree ݈ଵ  and  ݈ଶ  respectively. The ݊௧௛  element of the 
LFSR sequences ܾ௡  and  ܽ௡  can be written as  

ܾ௡ ൌ ଵ݂ܾ௡ିଵ ൅ ଶ݂ܾ௡ିଶ ൅⋯൅ ௟݂భܾ௡ି௟భ  and 

ܽ௡ ൌ ଵ݃ܽ௡ିଵ ൅ ݃ଶܽ௡ିଶ ൅⋯൅ ݃௟మܽ௡ି௟మ. 

           To attack such a system using fast correlation 
attacks, we have to generate equations using the polynomial 
݂ ൈ ݃  which is the feedback polynomial for the equivalent 
LFSR generating ܾ ⊕ ܽ. Finding parity equations is a 
computationally intensive job and is difficult even for ݈௜  
about   60, doing it for ݀݁݃ሺ݂ ൈ ݃ሻ ൐ 120  using the usual 
approach is ruled out. 
          We first consider the approach of finding parity 
checks for ݂ ൈ ݃  by taking products of parity checks of  ݂  
and parity checks of   ݃.  Observe that parity check for a 
polynomial ݂ is just a multiple of  ݂  which satisfies certain 
additional properties1. (1Low weight for LDPC decoding or 
certain distribution of taps for convolution codes). Since 
product of parity checks of  ݂ and  ݃  will be divisible by 
both ݂ and   ݃, we look at the possibility of using them as 
parity checks. 

          Fix the parameter ܤ for convolution encoding. We 
keep the value of this parameter the same for both ݂ and  ݃ 
and find pairs of parity check equations of the form. 
:		ଵܧ ∑ ܿ௜௜ୀ଴…஻ିଵ ௜ݔ ൅ ௜భݔ ൅  ௜మ                                      (4)ݔ
and 
:	ଶܧ ∑ ݀௜௜ୀ଴…஻ିଵ ௜ݔ ൅ ௜భݔ ൅  ௜మ                                      (5)ݔ

where ܧଵ  is a parity check equation for ݂  and ܧଶ  for   ݃; 
ܿ௜ݏ  and ݀௜ݏ  are arbitrary elements of   ܨܩሺ2ሻ. Multiplying 
by equation (4) & (5), we get: 

ܧ ∶ 	∑ ݁௜௜ୀ଴…஻ିଵ ௜ݔ ൅ ଶ௜భݔ ൅ ଶ௜మݔ ൅ ௜భା௜మݔ2 ൅
ሺݔ௜భ ൅ ∑௜మሻሺݔ ሺܿ௜ ൅ ݀௜ሻݔ௜௜ୀ଴…஻ିଵ ሻ                                 (6)   

where ܧ  is a  parity check equation for ݄ ൌ ݂݃,  where ݁௜ݏ   
are arbitrary elements of ܨܩሺ2ሻ.  
             If most of the terms of ݔଶ௜భ ൅ ଶ௜మݔ ൅ ௜భା௜మݔ2 	൅
ሺݔ௜భ ൅ ∑௜మሻሺݔ ሺܿ௜ ൅ ݀௜ሻݔ௜௜ୀ଴…஻ିଵ ሻ get cancelled leaving 
only ݐ ሺݐ ൌ  ሻ terms then we get parity checkܿݐ݁	3	ݎ݋	2
equations for convolution attacks. But the probability of 
this happening is very low. Thus this approach has low 
probability of being applicable.  
             Here, we give a new approach for selecting parity 
checks and decoding so as to recover initial state of the 
LFSR. 
              In the first step we find all parity check equations 
of the both polynomials ݂ሺݔሻ and ݃ሺݔሻ for LFSR as in the 
original attack. Form pairs ሺܧଵ,  ଶሻ consisting of parityܧ
check equation of the polynomials ݂ሺݔሻ and ݃ሺݔሻ such that 
the degrees of the terms corresponding to last ݐ positions     
݅ଵ	 & ݅ଶ are identical. Only these parity equations will be 
used in the attack.  
              The method can now be outlined as follows 
(Description assumes   ݐ ൌ 2, but the method is general): 

Step-1: For a fixed   ܤ, form the parity check equations for 
݂  and   ݃,   select those parity check equations for which 
the two highest degree in both LFSR ݂ሺݔሻ  and  ݃ሺݔሻ  are 
identical. That is form pairs of parity equations, one from ݂  
one from ݃  where last  ݐ taps are identical. 

Step-2: Find the state tables for convolutional encoder of 
both LFSR  ݂ሺݔሻ  and   ݃ሺݔሻ. 

Step-3: Construct the state table for convolutional encoder 
of LFSR ݄ሺݔሻ with the help of both LFSR ݂ሺݔሻ  &  ݃ሺݔሻ 
state tables. If in a given state   ௙ܵ, table for LFSR ݂ሺݔሻ on 
input 0 goes to state ௙ܵ଴  and gives the output ܣ  and on 
input 1 goes to state   ௙ܵଵ, giving output   ܤ, and similarly 
in the state   ௚ܵ, table for ݃ሺݔሻ  gives outputs ܥ  and  ܦ  for 
inputs 0  and   1, going to  ௚ܵ଴  and  ௚ܵଵ  respectively. Then 
in the state table for LFSR ݄ሺݔሻ  in the current state ൫ ௙ܵ, ௚ܵ൯  
on input  0  output can either  ሺܣ ⊕  ሻ  with the next stateܥ
൫ ௙ܵ଴, ௚ܵ଴൯  or       ሺܤ ⊕ ሻ  with state   ൫ܦ ௙ܵଵ, ௚ܵଵ൯.  
Similarly on input 1  output can be either ሺܣ ⊕  ሻ  withܦ
next state   ൫ ௙ܵ଴, ௚ܵଵ൯  or      ሺܤ ⊕     ሻ  with next stateܥ
൫ ௙ܵଵ, ௚ܵ଴൯. 

Step-4: Using Viterbi algorithm, we decode so as to find the 
pair of sequences ܽ′  and  ܾ′ which have the least Hamming 
distance from   ܽ′⊕ܾ′  to the received sequences. 

Amar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2526-2530

www.ijcsit.com 2528



   The pseudo codes for the above steps are given in Algorithm 1. 

Algorithm 1: Algorithm for decoding for product of two LFSRs 

1. procedure MAKE EQUATIONS ሺ݂, ݃, ݄, ݈ଵ, ݈ଶ, ݈, ܰ, ሻܤ
2. ଵܧ ൌ ∅    Parity Checks for ݂    
3. ଶܧ ൌ ∅    Parity Checks for ݃  
4. for ݅ଵ ∈ ܤ ൅ 1… . . ܰ  do
5. for ݅ଶ ∈ ݅ଵ ൅ 1… . . ܰ  do
6. If we get parity check equations for both ݂	&	݃ for ݅ଵ and ݅ଶ  then
7. ଵܧ ൌ ଵܧ ∪ ሺ∑ ܿ௜ݔ௜௜ୀ଴…஻ିଵ ൅ ௜భݔ ൅  ݂ ௜మሻ      Equations forݔ
8. ଶܧ ൌ ଶܧ ∪ ሺ∑ ݀௜ݔ௜௜ୀ଴…஻ିଵ ൅ ௜భݔ ൅  ݃ ௜మሻ     Equations forݔ
9. end if
10. end for
11. end for
12. end procedure
13. procedure MAKE STATE TRANSITION TABLE ሺܧଵ, ଶሻܧ
14. Design of convolutional encoder for ݂  and  ݃  using  ܧଵ  and  ܧଶ
15. ଵܶ ൌ State table for convolutional encoder for  ݂
16. ଶܶ ൌ State table for convolutional encoder for  ݃
17. ܶ ൌ State transition table for  ݄  is constructed as follows:
18. If   ଵܶൣ ௙ܵ, 0൧ ൌ ൫ ௙ܵ଴, ൯  and   ଵܶൣܣ ௙ܵ, 1൧ ൌ ൫ ௙ܵଵ, ൯  and  ଶܶൣܤ ௚ܵ, 0൧ ൌ ൫ ௚ܵ଴, ൯   and   ଶܶൣܥ ௚ܵ, 1൧ ൌ ൫ ௚ܵଵ, ൯ܦ

then

19. ܶൣ൫ ௙ܵ, 	 ௚ܵ൯, 0൧ ൌ ቄቀ൫ ௙ܵ଴, 	 ௚ܵ଴൯, ܣ ⊕ ቁܥ , ቀ൫ ௙ܵଵ, 	 ௚ܵଵ൯, ቁቅ	ܦ⨁ܤ

20. ܶൣ൫ ௙ܵ, 	 ௚ܵ൯, 1൧ ൌ ቄቀ൫ ௙ܵ଴, 	 ௚ܵଵ൯, ܣ ⊕ ቁܦ , ቀ൫ ௙ܵଵ, 	 ௚ܵ଴൯, ቁቅ	ܥ⨁ܤ

21. end if     Note:  Every entry in ܶ has two values instead of one as in ଵܶ  and  ଶܶ
22. end procedure
23. procedure GENERATE RECEIVED SEQUENCE  ሺݖ, ,ଵܧ ,ଶܧ ሻܤ
24. Given output sequence  ݖ௜
25. Transform the ݖ௜  to  ݎ௜  for  ݄ using ሺ݅ଵ, ݅ଶሻݏ of ܧ௜ݏ
26. end procedure
27. procedure MODIFIED VITERBI  ሺݎ, ܶ, ,ܤ ݈ሻ
28. for each starting state  ൫ ௙ܵ, 	 ௚ܵ൯, let ݀ு൫ ௙ܵ ⊕ ௚ܵ, ஻൯ be the initial metricݖ
29. Decode the sequence ݎ using the Viterbi algorithm for   ݊ ൌ …ܤ ܤ. ൅ ݈.

For metric use Hamming distance and take min over both the entries of ܶ

30. Output the estimated information sequence    ቀ൫ܾ ⊕ ܽ෣ ൯
ሺ஻ାଵሻ

, ൫ܾ ⊕ ܽ෣ ൯
ሺ஻ାଶሻ

, …… , ൫ܾ ⊕ ܽ෣ ൯
ሺ஻ା௟ሻ

ቁ.

31. Calculate the corresponding initial state of the LFSR ሺ݅. ݁.		ܾ ⊕ ܽሻ
32. end procedure

Example:  In order to test this new approach, a combining 
function ݂ ൌ ଵܺ ⊕ ܺ2 ⊕ܺ3ܺ4   was used to combine the 
LFSRs   ଵܺ,  ܺ2,   ܺ3  and  ܺ4. The polynomials used for 
positions ଵܺ  and  ܺ2  are  5ݔ ൅ 4ݔ ൅ 3ݔ ൅ 2ݔ ൅ 1 and 
଻ݔ ൅ 5ݔ ൅ 4ݔ ൅ 3ݔ ൅ 2ݔ ൅ ݔ ൅ 1  respectively. Note that 
ܲሺ݂ ൌ ௜ܺ:	݅ ൌ 1,…… ,4ሻ ൌ 0.5  but   ܲ൫݂ ൌ ሺ ଵܺ ⊕ ܺଶሻ൯ ൌ
0.75. Hence the new method developed in Section IV, is 
applied with the corresponding LFSR polynomial   ሺ5ݔ ൅
4ݔ ൅ 3ݔ ൅ 2ݔ ൅ 1ሻሺ	ݔ଻ ൅ 5ݔ ൅ 4ݔ ൅ 3ݔ ൅ 2ݔ ൅ ݔ ൅ 1ሻ. 
With the cipher length 200  of the initial condition for the 
equivalent register could be recovered. 

      If we consider the same combining function with the 
polynomials ݔ଺ ൅ ହݔ ൅ ସݔ ൅ ݔ ൅ 1 and ଼ݔ ൅ ଺ݔ ൅ ହݔ ൅
ଷݔ ൅ 1 used at positions  ଵܺ  and  ܺଶ  respectively. With the 
cipher length 200 of the initial condition for the equivalent 
register ሺݔ଺ ൅ ହݔ ൅ ସݔ ൅ ݔ ൅ 1ሻሺ଼ݔ ൅ ଺ݔ ൅ ହݔ ൅ ଷݔ ൅ 1ሻ 
could be recovered.  

V. CONCLUSION

We have given a new method for convolutional codes based 
fast correlation attack when combiner function is first order 
correlation immune but not second order correlation 
immune. The proposed method selects parity check 
equations of individual LFSRs which have same taps in last 
 positions and tries to run through the Viterbi algorithm  ݐ
for the LFSRs corresponding to the product LFSR. This is 
the first time a convolutional codes based fast correlation 
attack has been applied to a correlation immune function. 
Possibility of generalization of this method to the case 
where function is higher order correlation immune is an 
open area. 
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