
Convolutional Codes based FCA when Combiner
Function is 1-CI

 Amar Pandey1, Manoj Kumar Singh2, N. Rajesh Pillai3 and S. S. Bedi4

1J. K. Institute of Applied Physics & Technology
Department of Electronics & Communication

University of Allahabad, Allahabad, India
2, 3, 4 SAG, DRDO, Metcalfe House, Delhi-54, India

Abstract- Convolution Code based Fast Correlation Attacks
(FCA) are a powerful class of attacks on stream ciphers. Thus
stream ciphers are designed so that combiner function is
correlation immune. In this paper we propose a method to
apply Convolution Code based FCA when the combiner
function is first order correlation immune (1-CI) but not 2-CI.
We apply the attack on a pair of LFSRs whose sum sequence
is correlated to key-stream. Instead of directly computing
parity checks of equivalent LFSR for the sum sequence, we
collect the parity checks of the individual LFSRs into two sets
and from the cross product of the set of parity checks, select
those pairs in which the two highest degree terms in both the
parity checks are identical. These pairs of parity checks are
used for setting up the Viterbi decoding phase of the FCA.

 The proposed method is more efficient than the direct
FCA using the product of feedback polynomials of LFSRs.

Keywords- LFSR, Viterbi decoding, Convolutional code,
Correlation attack, Correlation immune, Combiner function.

I. INTRODUCTION

A popular key-stream generator used in stream ciphers
consists of several LFSRs combined through a non-linear
Boolean function. However, for certain generators of this
type, statistical dependencies or correlations exist between
the cipher text and the key-stream sequence produced by an
individual LFSR within the key generators. The correlation
between two binary segments is a measure of the extent to
which they approximate each order. Depending on the order
of resiliency of the function, there is still some correlation
between the cipher text and the LFSR outputs. Attacks that
exploit the similarity between the cipher text and the LFSR
outs are termed correlation attacks. The correlation between
cipher text and the output of an individual LFSR can be
exploited in a divide and conquer attack. Divide and
conquer attacks on key stream generators work on each
component of the key stream generators separately and
sequentially solve for individual initial contents (and
possibly, the feedback polynomials as well) of a subset of
the input LFSRs from a known segment of the key-stream
sequence. These attacks are based on a model where the
key-stream is viewed as a noisy version of an underlying
LFSR sequence and it is assumed the noise is additive and
independent of the underlying LFSR sequence. The attack,
if successful, recovers the phase of the LFSR sequence
which has the highest correlation with the key-stream
sequence. Such attack was first proposed by Siegenthaler
[9, 10]. [9] showed that several combining functions

previously proposed in the literature can be broken by a
cipher text only correlation attack.

 For combination generators, the original correlation
attack presented by Siegenthaler can be prevented by using
a correlation immune combining function [10]. Siegenthaler
introduced the concept of ݉௧௛-order correlation immunity
[10] for combining functions as a measure of their
resistance against such correlation attacks. He also showed
how, by iteration, to construct a limited family of ݉௧௛-order
correlation immune combining functions for every
݉,			1 ൑ ݉ ൑ ݊. [15] characterizes all ݉௧௛-order
correlation immune combining functions for every
݉,			1 ൑ ݉ ൑ ݊, in terms of their Walsh transforms and
extended slightly Siegenthaler’s characterization of the
algebraic normal form of correlation immune combining
functions.

 In case the running-key is statistically independent of
the output of each constituent LFSR, any correlation attack
should then consider several LFSRs together. More
generally, a correlation attack on a set of ݇ LFSRs namely
LFSR	݅ଵ	…………LFSR	݅௞	exploits the existence of a
correlation between the running-key ݏ and the output ܽ of a
smaller combination generator, which consists of the ݇
involved LFSRs combined by a Boolean function ݃ with ݇
variables. Since
 Pr	ሾݏ௡ ് ܽ௡ሿ ൌ Pr	ൣ ݂ሺ ଵܺ, …… , ܺ௡ሻ ് ݃൫ ௜ܺభ, …… , ௜ܺೖ൯൧ ്
௚݌		௚, this attack only succeeds when݌ ൏ 0.5. The number
݇ of involved LFSRs should then be strictly greater than the
correlation immunity order ݉ of the combining function		݂.

This cryptanalysis therefore requires that all 2
∑ ௟೔ೕ
೟శభ
ೕసభ initial

states be examined, where ݈௜ೕ is the length of LFSR ௝݅, it

becomes infeasible when the correlation immunity order ݉
of the combining is high. It can be significantly reduced by
using some improved algorithms, called fast correlation
attacks (FCA).

 In this paper we are applying the convolutional code
based FCA on first order correlation immune combiner
function and giving a new approach for selecting parity
check equations and decoding so as to recover initial state
of the LFSR.

 The paper is organized as follows. In Section II we
give overview of Fast Correlation Attack. In Section III we
give Convolutional Codes based FCA. In Section IV FCA
when combiner function is 1-CI. In Section V we conclude
with some possible extensions.

Amar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2526-2530

www.ijcsit.com 2526

II. FAST CORRELATION ATTACKS- AN OVERVIEW
Fast correlation attacks, as pioneered by Meier and
Staffelbach [13, 14], improve on Siegenthaler’s correlation
attacks by attempting to deduce the initial state without
exhaustively trying all possible initial states and
considerably reduce the running-time but require a longer
segment of known key-stream. Meier and Staffelbach
presented two different algorithms ܣ and ܤ for fast
correlation attacks, where they use the correlation between
the key-stream and the output stream of an LFSR. The
algorithms largely depend on the same model of the key
generator, the same fundamental observations and the same
statistical model. Instead of an exhaustive search over all
possible initial states, the algorithms are based on using
certain parity check equations created from feedback
polynomial of the LFSR. The fast correlation attack
algorithm operates in two phases. In the first phase the
algorithms find a set of suitable parity check equations
based on the underlying LFSR feedback polynomial. In the
second phase these parity check equations are applied to the
key-stream sequence to determine key-stream bits which,
with high probability, are the same as the corresponding
bits of the underlying LFSR sequence. A threshold decision
process along with an information set decoding technique
or an iterative error-correction algorithm is then applied.
The algorithm is most efficient when the feedback
connection polynomial has only few taps ሺݐ ൑ 10ሻ.
 The performance of the algorithms ܣ and ܤ are
described in [13, 14]. The algorithms work well when the
LFSR contains few taps, but for LFSRs with many taps the
algorithms fail. The reason for this failure is that for LFSRs
with many taps each parity check equations gives a very
small average correlation and hence many equations are
needed in order to succeed. In other words, correlation
probability ݌ that the algorithms can handle is much lower

if the LFSR has many taps		ቀൎ ݈
2ൗ ቁ. A new method for

finding parity check equations was suggested in [6, 12]. Let
ܽ଴ be the initial state of the LFSR. The state after ݐ shifts
can be written as ܽ௧ ൌ ܺ௧ܽ଴ , where ܺ is an ݈ ൈ ݈ matrix
that depends of the feedback polynomial. Using powers of
the matrix ܺ a set of parity check equations can be found.
 More methods for finding parity check equations
are suggested in [1, 3, 4, 5, 12]. The underlying idea is to
find code words of low weight in a general linear code.

III. CONVOLUTIONAL CODES BASED FCA
Johansson and Jonsson in 1999 introduced the concept of
correlation attack using convolutional coding [8, 11]. The
parity check equations as described in Fast Correlation
Attack designed for a second phase consists of a very
simple memory less decoding algorithm. In this approach
decoding algorithms are considered to include memory, but
still have a low decoding complexity. This work uses the
Viterbi algorithm as its decoding algorithm. This algorithm
also takes place in two phases. The first phase finds suitable
parity check equations that will determine basis of encoder,
defining the convolutional code and the second phase
includes decoding through Viterbi algorithm. Most
decoding algorithms which exploit the structure of the
generator matrix use the existence of sparse parity check

equations for the linear code ܥ. This technique was first
proposed by Meier and Staffelbach in their original paper
[13] and later improved [1, 7].
 Let the linear code ܥ stemming from the LFSR
sequences. There is a corresponding ݈ ൈ ܰ generator
matrix ܩ௅ிௌோ, such that ܽ ൌ ܽ଴ܩ௅ிௌோ , where ܽ଴ is the
initial state of the LFSR. The generator matrix is
furthermore written in systematic form i.e. ܩ௅ிௌோ ൌ ሺܫ௟, ܼሻ,
where ܫ௟ is the ݈ ൈ ݈ identity matrix. Let ܤ be the fixed
memory size and ܴ denote the rate. In convolutional
encoder with memory ܤ and rate ܴ ൌ 1 ሺ݉ ൅ 1ሻ⁄ the
vector ݒ௡ of the code word symbols at time ݊, ݒ௡ ൌ
൫ݒ௡

ሺ଴ሻ, ௡ݒ
ሺଵሻ, …… , ௡ݒ

ሺ௠ሻ൯ is of the form

௡ݒ ൌ ܽ௡݃଴ ൅ ܽ௡ିଵ ଵ݃ ൅ ⋯…൅ ܽ௡ି஻݃஻ (1)

where each ݃௜, 0 ൑ ݅ ൑ is a vector of length ሺ݉ ܤ ൅ 1ሻ,
which is used to encode the information sequence ܽ ൌ
ܽ଴, ܽଵ, ……… , ܽே, i.e. ݒ ൌ will be constructed as ܩ .ܩܽ
the generator matrix of a convolutional code. The parity
check equations used in this approach generalize the
approach of Meier and Staffelbach in the sense that they use
the symbols ܽ௡ and (up to) ݐ others ܽ௜

 but also any ,ݏ′
linear combination of the ܤ symbols, ܽ௡ି௝,					0 ൏ ݆ ൑ ,ܤ
i.e.

ܽ௡ ൅ ∑ ௝ܿ௝ୀଵ,…,஻ ܽ௡ି௝ ൅ ∑ ܽ௡ା௜ೕ௝ୀଵ,…,௧ ൌ 0 (2)

where the last sum does not necessarily contain ݐ terms. By
defining ܾ௡

ሺ௞ሻ, 0 ൏ ݇ ൑ ݉, as the sum of ݐሺ௞ሻ ൑ ݐ
symbols, the complete set of parity check equations can be
written as:

ܽ௡ ൅ ∑ ௝ܿ
ሺଵሻ

௝ୀଵ,…,஻ ܽ௡ି௝ ൅ ܾ௡
ሺଵሻ ൌ 0,

ܽ௡ ൅ ∑ ௝ܿ
ሺଶሻ

௝ୀଵ,…,஻ ܽ௡ି௝ ൅ ܾ௡
ሺଶሻ ൌ 0,

……………………..
……………………..

 ܽ௡ ൅ ∑ ௝ܿ
ሺ௠ሻ

௝ୀଵ,…,஻ ܽ௡ି௝ ൅ ܾ௡
ሺ௠ሻ ൌ 0. (3)

From (1) & (3), with the addition of the systematic bit

௡ݒ
ሺ଴ሻ ൌ ܽ௡ , the vectors ௜݃ can be identified as ݃଴ ൌ
ሺ1,1, …… ,1ሻ and ݃௜ ൌ ൫0, ܿ௜

ሺଵሻ, ܿ௜
ሺଶሻ, …… , ܿ௜

ሺ௠ሻ൯,			݅ ൐ 0.
The generator matrix for the convolutional code can then be
written as

ܩ ൌ ቆ	
݃଴		݃ଵ		݃ଶ ⋯ ݃஻
									݃଴					 ଵ݃ ݃ଶ ⋯			

⋱ ⋱ 	⋱							⋱
݃஻ቇ	

To prepare for the decoding, one constructs the received

vector ݎ through ݎ௡
ሺ଴ሻ ൌ ௡ݎ ௡ andݖ

ሺ௞ሻ ൌ ∑ ௡ା௜ೕݖ
ሺ௞ሻ

௝ ,			0 ൏ ݇ ൑

݉. The sum over ݆ includes ݐሺ௞ሻ ൑ terms (cf. (2) and ݐ
(3)).
 The original Viterbi algorithm assumes that the
convolutional encoder starts in state 0. But in this
application we start from any possible initial state to any
ending state for trellis corresponding to the convolutional
code. During decoding of a convolutional code, the initial
state is usually well defined, but in the current setting, the
initial state is unknown. Therefore, the decoding will need
to be performed for all 2஻ possible initial states. Let

Amar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2526-2530

www.ijcsit.com 2527

ܼ஻ ൌ ሺݖଵ, ,ଶݖ …… , ஻ሻ, for each possible starting stateݖ
ܵ஻ ൌ ሺݏଵ, ,ଶݏ …… , ,஻ሻ. Let ݀ுሺܵ஻ݏ ܼ஻ሻ, the Hamming
distance between ܵ஻ and ܼ஻, be initial metric for the state
when we start the Viterbi algorithm at ݊ ൌ Then one .ܤ
runs the Viterbi algorithm over ݈ information symbols. At
depth ܤ ൅ ݈ we search for the ending state ܵ஻ା௟ with
minimum metric. The decoder output is then the
information sequence corresponding to the surviving path
from one of the starting states ܵ஻ to the ending state ܵ஻ା௟
with minimum metric. To recover the initial state of the
LFSR, it is enough to decode ݈ consecutive information bits
correctly. Optimal decoding (ML-decoding) of
convolutional codes uses the Viterbi algorithm to decode as
follows:

1) For each state ܵ, let ݈݃݋ ቀܲ൫ܵ ൌ ሺݖଵ, ,ଶݖ …… , ஻ሻ൯ቁݖ

be the initial metric for that state when we start the
Viterbi algorithm at ݊ ൌ .ܤ

2) Decode the received sequence ݎ using the Viterbi
algorithm from ݊ ൌ ݊ until ܤ ൌ ܤ ൅ ݈.

Output the estimated information sequence
൫ܽሺ஻ାଵሻෟ ,ܽሺ஻ାଶሻ,ෟ …… ,ܽሺ஻ା௟ሻෟ ൯. Finally, calculate the
corresponding initial state of the LFSR.
 In [8], ݐ ൌ 2 was used. A variant of the attack
using ݐ ൌ 4 was proposed by Molland et. al. in [2]. Using
ݐ ൌ 4 results in many more, but weaker equations. The
complexity of this approach is ܱሺ݈. 2஻.݉ሻ.

IV. FCA WHEN COMBINER FUNCTION IS 1-CI
Assume that the combiner function is first order correlation
immune (1-CI); More specifically the output sequence is
not correlated to two input sequences ܾ and ܽ but
correlated to ܾ ⊕ ܽ. Let the two sequences ܾ and ܽ be
generated by LFSRs with feedback polynomials:

݂ሺݔሻ ൌ 1 ൅ ଵ݂ݔ ൅ ଶ݂ݔଶ ൅⋯… .൅ ௟݂భݔ
௟భ and

݃ሺݔሻ ൌ 1 ൅ ଵ݃ݔ ൅ ݃ଶݔଶ ൅ ⋯… .൅݃௟మݔ
௟మ

of degree ݈ଵ and ݈ଶ respectively. The ݊௧௛ element of the
LFSR sequences ܾ௡ and ܽ௡ can be written as

ܾ௡ ൌ ଵ݂ܾ௡ିଵ ൅ ଶ݂ܾ௡ିଶ ൅⋯൅ ௟݂భܾ௡ି௟భ and

ܽ௡ ൌ ଵ݃ܽ௡ିଵ ൅ ݃ଶܽ௡ିଶ ൅⋯൅ ݃௟మܽ௡ି௟మ.

 To attack such a system using fast correlation
attacks, we have to generate equations using the polynomial
݂ ൈ ݃ which is the feedback polynomial for the equivalent
LFSR generating ܾ ⊕ ܽ. Finding parity equations is a
computationally intensive job and is difficult even for ݈௜
about 60, doing it for ݀݁݃ሺ݂ ൈ ݃ሻ ൐ 120 using the usual
approach is ruled out.
 We first consider the approach of finding parity
checks for ݂ ൈ ݃ by taking products of parity checks of ݂
and parity checks of ݃. Observe that parity check for a
polynomial ݂ is just a multiple of ݂ which satisfies certain
additional properties1. (1Low weight for LDPC decoding or
certain distribution of taps for convolution codes). Since
product of parity checks of ݂ and ݃ will be divisible by
both ݂ and ݃, we look at the possibility of using them as
parity checks.

 Fix the parameter ܤ for convolution encoding. We
keep the value of this parameter the same for both ݂ and ݃
and find pairs of parity check equations of the form.
:		ଵܧ ∑ ܿ௜௜ୀ଴…஻ିଵ ௜ݔ ൅ ௜భݔ ൅ ௜మ (4)ݔ
and
:	ଶܧ ∑ ݀௜௜ୀ଴…஻ିଵ ௜ݔ ൅ ௜భݔ ൅ ௜మ (5)ݔ

where ܧଵ is a parity check equation for ݂ and ܧଶ for ݃;
ܿ௜ݏ and ݀௜ݏ are arbitrary elements of ܨܩሺ2ሻ. Multiplying
by equation (4) & (5), we get:

ܧ ∶ 	∑ ݁௜௜ୀ଴…஻ିଵ ௜ݔ ൅ ଶ௜భݔ ൅ ଶ௜మݔ ൅ ௜భା௜మݔ2 ൅
ሺݔ௜భ ൅ ∑௜మሻሺݔ ሺܿ௜ ൅ ݀௜ሻݔ௜௜ୀ଴…஻ିଵ ሻ (6)

where ܧ is a parity check equation for ݄ ൌ ݂݃, where ݁௜ݏ
are arbitrary elements of ܨܩሺ2ሻ.
 If most of the terms of ݔଶ௜భ ൅ ଶ௜మݔ ൅ ௜భା௜మݔ2 	൅
ሺݔ௜భ ൅ ∑௜మሻሺݔ ሺܿ௜ ൅ ݀௜ሻݔ௜௜ୀ଴…஻ିଵ ሻ get cancelled leaving
only ݐ ሺݐ ൌ ሻ terms then we get parity checkܿݐ݁	3	ݎ݋	2
equations for convolution attacks. But the probability of
this happening is very low. Thus this approach has low
probability of being applicable.
 Here, we give a new approach for selecting parity
checks and decoding so as to recover initial state of the
LFSR.
 In the first step we find all parity check equations
of the both polynomials ݂ሺݔሻ and ݃ሺݔሻ for LFSR as in the
original attack. Form pairs ሺܧଵ, ଶሻ consisting of parityܧ
check equation of the polynomials ݂ሺݔሻ and ݃ሺݔሻ such that
the degrees of the terms corresponding to last ݐ positions
݅ଵ	 & ݅ଶ are identical. Only these parity equations will be
used in the attack.
 The method can now be outlined as follows
(Description assumes ݐ ൌ 2, but the method is general):

Step-1: For a fixed ܤ, form the parity check equations for
݂ and ݃, select those parity check equations for which
the two highest degree in both LFSR ݂ሺݔሻ and ݃ሺݔሻ are
identical. That is form pairs of parity equations, one from ݂
one from ݃ where last ݐ taps are identical.

Step-2: Find the state tables for convolutional encoder of
both LFSR ݂ሺݔሻ and ݃ሺݔሻ.

Step-3: Construct the state table for convolutional encoder
of LFSR ݄ሺݔሻ with the help of both LFSR ݂ሺݔሻ & ݃ሺݔሻ
state tables. If in a given state ௙ܵ, table for LFSR ݂ሺݔሻ on
input 0 goes to state ௙ܵ଴ and gives the output ܣ and on
input 1 goes to state ௙ܵଵ, giving output ܤ, and similarly
in the state ௚ܵ, table for ݃ሺݔሻ gives outputs ܥ and ܦ for
inputs 0 and 1, going to ௚ܵ଴ and ௚ܵଵ respectively. Then
in the state table for LFSR ݄ሺݔሻ in the current state ൫ ௙ܵ, ௚ܵ൯
on input 0 output can either ሺܣ ⊕ ሻ with the next stateܥ
൫ ௙ܵ଴, ௚ܵ଴൯ or ሺܤ ⊕ ሻ with state ൫ܦ ௙ܵଵ, ௚ܵଵ൯.
Similarly on input 1 output can be either ሺܣ ⊕ ሻ withܦ
next state ൫ ௙ܵ଴, ௚ܵଵ൯ or ሺܤ ⊕ ሻ with next stateܥ
൫ ௙ܵଵ, ௚ܵ଴൯.

Step-4: Using Viterbi algorithm, we decode so as to find the
pair of sequences ܽ′ and ܾ′ which have the least Hamming
distance from ܽ′⊕ܾ′ to the received sequences.

Amar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2526-2530

www.ijcsit.com 2528

 The pseudo codes for the above steps are given in Algorithm 1.

Algorithm 1: Algorithm for decoding for product of two LFSRs

1. procedure MAKE EQUATIONS ሺ݂, ݃, ݄, ݈ଵ, ݈ଶ, ݈, ܰ, ሻܤ
2. ଵܧ ൌ ∅ Parity Checks for ݂
3. ଶܧ ൌ ∅ Parity Checks for ݃
4. for ݅ଵ ∈ ܤ ൅ 1… . . ܰ do
5. for ݅ଶ ∈ ݅ଵ ൅ 1… . . ܰ do
6. If we get parity check equations for both ݂	&	݃ for ݅ଵ and ݅ଶ then
7. ଵܧ ൌ ଵܧ ∪ ሺ∑ ܿ௜ݔ௜௜ୀ଴…஻ିଵ ൅ ௜భݔ ൅ ݂ ௜మሻ Equations forݔ
8. ଶܧ ൌ ଶܧ ∪ ሺ∑ ݀௜ݔ௜௜ୀ଴…஻ିଵ ൅ ௜భݔ ൅ ݃ ௜మሻ Equations forݔ
9. end if
10. end for
11. end for
12. end procedure
13. procedure MAKE STATE TRANSITION TABLE ሺܧଵ, ଶሻܧ
14. Design of convolutional encoder for ݂ and ݃ using ܧଵ and ܧଶ
15. ଵܶ ൌ State table for convolutional encoder for ݂
16. ଶܶ ൌ State table for convolutional encoder for ݃
17. ܶ ൌ State transition table for ݄ is constructed as follows:
18. If ଵܶൣ ௙ܵ, 0൧ ൌ ൫ ௙ܵ଴, ൯ and ଵܶൣܣ ௙ܵ, 1൧ ൌ ൫ ௙ܵଵ, ൯ and ଶܶൣܤ ௚ܵ, 0൧ ൌ ൫ ௚ܵ଴, ൯ and ଶܶൣܥ ௚ܵ, 1൧ ൌ ൫ ௚ܵଵ, ൯ܦ

then

19. ܶൣ൫ ௙ܵ, 	 ௚ܵ൯, 0൧ ൌ ቄቀ൫ ௙ܵ଴, 	 ௚ܵ଴൯, ܣ ⊕ ቁܥ , ቀ൫ ௙ܵଵ, 	 ௚ܵଵ൯, ቁቅ	ܦ⨁ܤ

20. ܶൣ൫ ௙ܵ, 	 ௚ܵ൯, 1൧ ൌ ቄቀ൫ ௙ܵ଴, 	 ௚ܵଵ൯, ܣ ⊕ ቁܦ , ቀ൫ ௙ܵଵ, 	 ௚ܵ଴൯, ቁቅ	ܥ⨁ܤ

21. end if Note: Every entry in ܶ has two values instead of one as in ଵܶ and ଶܶ
22. end procedure
23. procedure GENERATE RECEIVED SEQUENCE ሺݖ, ,ଵܧ ,ଶܧ ሻܤ
24. Given output sequence ݖ௜
25. Transform the ݖ௜ to ݎ௜ for ݄ using ሺ݅ଵ, ݅ଶሻݏ of ܧ௜ݏ
26. end procedure
27. procedure MODIFIED VITERBI ሺݎ, ܶ, ,ܤ ݈ሻ
28. for each starting state ൫ ௙ܵ, 	 ௚ܵ൯, let ݀ு൫ ௙ܵ ⊕ ௚ܵ, ஻൯ be the initial metricݖ
29. Decode the sequence ݎ using the Viterbi algorithm for ݊ ൌ …ܤ ܤ. ൅ ݈.

For metric use Hamming distance and take min over both the entries of ܶ

30. Output the estimated information sequence ቀ൫ܾ ⊕ ܽ෣ ൯
ሺ஻ାଵሻ

, ൫ܾ ⊕ ܽ෣ ൯
ሺ஻ାଶሻ

, …… , ൫ܾ ⊕ ܽ෣ ൯
ሺ஻ା௟ሻ

ቁ.

31. Calculate the corresponding initial state of the LFSR ሺ݅. ݁.		ܾ ⊕ ܽሻ
32. end procedure

Example: In order to test this new approach, a combining
function ݂ ൌ ଵܺ ⊕ ܺ2 ⊕ܺ3ܺ4 was used to combine the
LFSRs ଵܺ, ܺ2, ܺ3 and ܺ4. The polynomials used for
positions ଵܺ and ܺ2 are 5ݔ ൅ 4ݔ ൅ 3ݔ ൅ 2ݔ ൅ 1 and
଻ݔ ൅ 5ݔ ൅ 4ݔ ൅ 3ݔ ൅ 2ݔ ൅ ݔ ൅ 1 respectively. Note that
ܲሺ݂ ൌ ௜ܺ:	݅ ൌ 1,…… ,4ሻ ൌ 0.5 but ܲ൫݂ ൌ ሺ ଵܺ ⊕ ܺଶሻ൯ ൌ
0.75. Hence the new method developed in Section IV, is
applied with the corresponding LFSR polynomial ሺ5ݔ ൅
4ݔ ൅ 3ݔ ൅ 2ݔ ൅ 1ሻሺ	ݔ଻ ൅ 5ݔ ൅ 4ݔ ൅ 3ݔ ൅ 2ݔ ൅ ݔ ൅ 1ሻ.
With the cipher length 200 of the initial condition for the
equivalent register could be recovered.

 If we consider the same combining function with the
polynomials ݔ଺ ൅ ହݔ ൅ ସݔ ൅ ݔ ൅ 1 and ଼ݔ ൅ ଺ݔ ൅ ହݔ ൅
ଷݔ ൅ 1 used at positions ଵܺ and ܺଶ respectively. With the
cipher length 200 of the initial condition for the equivalent
register ሺݔ଺ ൅ ହݔ ൅ ସݔ ൅ ݔ ൅ 1ሻሺ଼ݔ ൅ ଺ݔ ൅ ହݔ ൅ ଷݔ ൅ 1ሻ
could be recovered.

V. CONCLUSION

We have given a new method for convolutional codes based
fast correlation attack when combiner function is first order
correlation immune but not second order correlation
immune. The proposed method selects parity check
equations of individual LFSRs which have same taps in last
 positions and tries to run through the Viterbi algorithm ݐ
for the LFSRs corresponding to the product LFSR. This is
the first time a convolutional codes based fast correlation
attack has been applied to a correlation immune function.
Possibility of generalization of this method to the case
where function is higher order correlation immune is an
open area.

ACKNOWLEDGEMENT
The authors wish to thank Dr. P. K. Saxena for continuous
support and encouragement for this work. They also wish to
thank Dr. Indivar Gupta for their invaluable support and
informative suggestions.

Amar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2526-2530

www.ijcsit.com 2529

REFERENCES
[1] A. Canteaut and M. Trabbia, “Improved fast correlation attacks

using parity-check equations of weight 4 and 5”, in Advances in
Cryptology-EUROCRYPT 2000, ser. LNCS, vol. 1807. Springer-
Verlag, 2000, pp. 573588.

[2] Havard Molland, John Erik Mathiassen and Tor Hellasath,
“ImprovedFast Correlation Attack Using Low Rate Codes”, K. G.
Paterson (Ed); Cryptology and coding 2003, LNCS 2898, pp. 67-
81,2003.@Springer- Verlag Heidelberg 2003.

[3] M. Mihaljevic, M. P. C. Fossorier and H. Imai, “Fast Correlation
Attack Algorithm with List Decoding and an Application”, Fast
Software Encryption-FSE 2000.

[4] Meier W., “Fast Correlation Attacks: Methods and
Countermeasures”. In: Joux, A. (eds) Fast Software Encryption 2011.
Lecture Notes in Computer Science, pp.5567. Springer-Verlag 2011.

[5] M. Agren, C. Londahl, M. Hell, T. Johansson, “ A survey on fast
correlation attacks”, Department of Electrical and Information
Technology, Lund University, Sweden, Springer Science + Business
Media, LLC 2012.

[6] M. Mihaljevic and J. Golic, “A fast iterative algorithm for a shift
register initial state reconstruction given the noisy output sequence”,
Advances in Cryptology-AUSCRYPT-90, Lecture notes in science,
vol.453, Springer-Verlag, 1990, pp.165-175.

[7] Sarbani Palit, Bimal K. roy and Arindom De, “A Fast Correlation
Attack for LFSR based Stream Cipher”, LNCS-2846, pp. 331-342,
Springer-Verlag Berlin Heidelberg 2003.

[8] T. Johansson and F. Jonsson, “Improved fast correlation attacks on
stream ciphers via convolutional code”, In Advances in Cryptology-
EUROCRYPT-99, volume 1592 of Lecture Notes in Computer
Science. Pages 347-362, Springer, 1999.

[9] T. Siegenthaler, “Decrypting a class of stream ciphers using cipher
text only”, IEEE Transactions on Computers, Vol.c-34, No. 1,
January 1985, pp. 8185.

[10] T. Siegenthaler, “Correlation Immunity of Non linear Combining
function for Cryptographic Applications”, IEEE Transacations on
Information Theory, Vol. 30, No. 5, September 1984, pp. 776780.

[11] T. Johansson and F. Jonsson, “Fast Correlation Attacks based on
Turbo Code Techniques”, Proceedings of Cryptology Crypto 99,
Springer Verlag, LNCS 1666, pp. 181197.

[12] V. V. Chepyzhov, T. Johansson and B. Smeets, “A simple algorithm
for fast correlation attacks on stream ciphers”, Fast Software
Encryption, 2000.

[13] W. Meier and O. Staffelbach, “Fast correlation attacks on certain
stream ciphers”, Journal of Cryptography, pp. 159-176, 1989.

[14] W. Meier and O. Staffelbach, “Fast correlation attacks on stream
ciphers”, In Advances in Cryptology- EUROCRYPT 88, volume
LNCS 330, pages 301-314, Springer-Verlag, 1988.

[15] Xiao Guo-Zhen and James L. Massey, Fellow, IEEE, “A Spectral
Characterization of Correlation Immune Combining Functions”,
IEEE Transaction Theory, Vol. 34, No. May 1988.

Amar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2526-2530

www.ijcsit.com 2530

